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In"nite and periodic arrays of porous disks are considered, in oscillatory #ow perpendicular to
their planes. This con"guration is of interest for the o!shore oil industry, for instance to be used
as dampers to reduce the heave motion of truss SPAR platforms. The hydrodynamic problem is
solved by the method of matched eigenfunction expansions, under the assumptions that losses
of head, proportional to the square of the traversing velocities, occur at the disks, and that
potential #ow theory is applicable. Added mass and damping coe$cients are derived, as
functions of the relative spacings between the disks, and of the parameter (A/a) (1!q)/(2kq2),
where A is the #ow motion amplitude, a the disks radii, q the porosity, or open-area ratio, and
k a discharge coe$cient, close to 0.5. Results are also given for disks that are partially porous,
from their axis to some radial distance. The practical applicability of the obtained results is
discussed. ( 2001 Academic Press
1. INTRODUCTION

OFFSHORE FLOATING OR COMPLIANT STRUCTURES are susceptible to resonant behaviour, under
linear or nonlinear wave excitation. An e$cient means to reduce the amplitudes of the
resonant responses is to increase energy dissipation, by enhancing drag forces on some parts
of the structures. A well-known example is the resonant roll motion of ships and barges,
which bilge keels reduce e$ciently. Another means is to shift the resonant frequencies
outside the wave frequency range, for instance by increasing the added mass through
additional plates.

In the past years some interest has arisen for perforated elements to be used as passive
dampers [e.g. see Downie et al. 2000]. In 1990, the author (Molin & Legras 1990) proposed
a hydrodynamic analysis of the Roseau tower stabilizer, an open box with slots. The
theoretical model was based on potential #ow theory and on the assumption that losses of
head, proportional to the square of the (relative) traversing #uid velocities, are induced at
the openings. Added mass and damping coe$cients were obtained and good agreement was
observed with experimental results from dedicated model tests [see also Damy & Molin
(1991)]. A remarkable feature is that the added mass and damping are amplitude dependent.
Other applications were subsequently considered, such as the heave motion of a semi-
submersible platform with perforated pontoons (Molin 1992a, b), or the damping of waves
through a series of vertical screens (Molin & Fourest 1992), or over a perforated horizontal
plate (Molin & BeH tous 1993; Molin 1999), within all cases there is good agreement between
theoretical results and experiments. The case of steady current #ow over shrouded cylinders
was also investigated (Molin 1993).

An o!shore production system that has gained some success, recently, is the SPAR
platform, consisting in a #oating vertical cylinder, of large draft [e.g. see Le Blanc (1996)].

The heave natural period is roughly equal to 2nJd/g, d being the draft and g the
0889}9746/01/020275#16 $35.00/0 ( 2001 Academic Press
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acceleration due to gravity. As a result, drafts over 200 m are necessary to ensure that the
heave natural period be well beyond the wave period range. At smaller drafts, means to
enhance damping are necessary. A proposed system consists in piling up a series of
horizontal plates below the main hull, linked by a truss structure. The damping e$ciency of
such solid plates has been studied experimentally (Prislin et al., 1998; Lake et al., 1999).
They also provide valuable supplementary added mass.

Another o!shore structure is the TPG 3300 that consists in a deeply immersed #at
pontoon, of large dimensions, supporting three or four vertical columns running through
the free surface up to the deck (Thomas & Gaubil 1997). The pontoon is open in its centre,
to permit passage for the risers. Being able to adjust the heave damping is an attractive issue
that could make viable designs with reduced heave natural periods, as compared to the
present ones. A possibility considered is to partially obstruct the opening through the
pontoon, to reach an optimized open-area ratio.

These two cases have motivated the present study, where we consider an in"nite and
periodic series of disks. The disks are either completely or partially porous. The periodicity
assumption renders the mathematical problem easier to tackle, and gives valuable results
for several plates in proximity. For an isolated disk it su$ces to increase the periodicity
length beyond some distance. The circular disk assumption is also made for convenience:
the geometry becomes axisymmetric.

The theoretical frame is identical with the one used in the quoted previous publications:
use is made of potential #ow theory. In the particular geometry considered here, this
assumption is somewhat criticizable, since the #ow separates not only through the openings
but also at the edges of the disks. This latter e!ect is not taken into account in our
theoretical frame. In the discussion part of the paper, we hint that it becomes negligible at
su$ciently low values of the Keulegan}Carpenter number, expressed as KC"nA/a,
A being the motion amplitude and a the disk radius. It is for these small
Keulegan}Carpenter numbers that porous disks appear as more e$cient dampers than
solid ones.

2. THEORY

2.1. EIGENFUNCTION EXPANSIONS

We consider an in"nite and periodic array of porous disks, with Oz as their axisymmetry
axis; their radius is a, their spacing is l. The array is "xed. The #uid domain is unbounded.
The #ow velocity, far away from the array, is =

0
(t) in the Oz direction.

We use a cylindrical coordinate system (R, h, z) with the plane z"0 conciding with the
porous disk number 0. We will speci"cally consider the cell number 1, in-between the
porous disks 0 and 1 (extending from z"0 up to l in z, and from 0 to a in R). Within this cell
the velocity potential of the #ow will be written as the sum of two eigenfunction expansions.
We also use an eigenfunction expansion in the outer domain R5a.

In this outer domain the #ow velocity is z-periodic with periodicity length l. The velocity
potential is also antisymmetric in z with respect to each plane z"j l. Hence, it can be
decomposed as
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where j
n
"2nn/l and K

0
is the modi"ed Bessel function of the second kind and order 0.

With u
e
thus written, the Laplace equation and the condition at radial in"nity are ful"lled.

In the inner domain, two sets of eigenfunctions are used. The "rst one corresponds to the
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case when the disks are solid and the velocity potential satis"es the homogeneous Neumann
condition. The expansion for u

iH
is then
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where k
m
"(2m!1)n/l and I

0
is the modi"ed Bessel function of the "rst kind and order 0.

Only odd values of k
m
l/n are retained because of the antisymmetry property. Note that

B
0j

takes a di!erent value in each cell. As a matter of fact one obtains readily that
B
0j

(t)"=
0
(t) (2j!1)l/2, where j is the cell number.

The second expansion is given in the following section, after the boundary condition at
the porous walls has been described.

2.2. BOUNDARY CONDITION AT THE POROUS WALLS

We use the same condition as in the quoted papers [e.g., see Molin (1992b)]. The porosity is
assumed to consist of small openings, with sharp edges, so that the #ow separates. There
results a pressure drop, proportional to the square of the velocity through the opening:

DP"

1

2k
o<D<D, (3)

where k is a discharge coe$cient, the value of which depends on the shape of the openings
and of the Reynolds number. In steady-#ow conditions, typical values are in the range
0)5}1.

This relationship is then taken in an averaged sense, locally over a large number of
openings. This means that the size and spacing of the openings must be much smaller than
the scale of the averaged #ow. The porosity (or open-area ratio) being q, one writes that the
pressure P applies on the solid parts (yielding a corrective factor 1!q), and that the velocity
< is the (locally) averaged velocity v divided by q. Hence, one gets

Dp"
1!q
2kq2

ov DvD , (4)

where p is the (locally) averaged pressure, given by the Bernoulli}Lagrange equation

p"!ou
t
!1

2
o($u)2. (5)

The quadratic term can be discarded under the assumption that the motion amplitude of
the #ow be small as compared to the disk radius. (As a matter of fact, for the problem
considered here, it can readily be checked that the velocities squared are the same on either
side of the disks, so the quadratic terms just cancel out.)

Finally, the boundary condition at the disks is taken as

!o
L
Lt

(u}!u`)"o
1!q
2kq2

u
z
Du

z
D , (6)

u~ is the velocity potential at the lower side of the disk, and u` at the upper side.
It must be stressed out that the arguments leading to this equation are somewhat

heuristic, and that some questions may be put forward with regard to the application of
equation (3) to unsteady #ows, or to the range of validity of (6) when the porosity ratio
varies from zero to unity. Some choice also has to be made for the k coe$cient. To answer
these questions comparisons with experimental results are necessary.
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Such comparisons are reported in the quoted papers. They deal with various geometries
and #ow conditions, with porosity ratios in the range 10}40%. Quite favourable agree-
ments between experimental and numerical results are reported, with the k coe$cient
usually slightly above 0)5.

The second condition to impose at the disk results from mass conservation which
requires that

u~
z
"u`

z
"u

z
.

At the edge of the disk u~"u` and hence the traversing velocity is nil. We take
advantage of this to expand the traversing velocity, u

z
(R, 0, t), as
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where J
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is the Bessel function of order 0 and the &wavenumbers' l
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a)"0. It can readily be veri"ed (see Appendix A) that the functions J
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for iOj. It can be checked that the set is complete.
When u

z
is thus given at z"0 and l, a particular solution within the cell is
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The general solution within the cell is obtained by adding up u
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and u
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:
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All that remains to be done is to match u
i
and u

e
, and their radial derivatives, for R"a,

and use the discharge equation (6) as an evolution equation to advance the A
m
, B

n
and

C
i
coe$cients in time, given the outer-#ow velocity =

0
(t).

2.3. MATCHING OF THE POTENTIALS

Setting R"a in equations (1) and (9) we have
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Averaging each side in z over [0 l] we obtain B
0
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0
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Then we take advantage of the orthogonality of the set [cosk
m
z] over [0 l]. Multiplying

each side by cosk
m
z and integrating in z from 0 up to l we obtain the vectorial equation
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2.4. MATCHING OF THE RADIAL VELOCITIES

Equating the R derivatives of equations (1) and (9) at R"a we get

=
+
n/1

A
n
(t) sin j

n
z j

n

K@
0
(j

n
a)

K
0
(j

n
a)
"

=
+

m/1

B
m
(t) cos k

m
zk

m

I@
0
(k

m
a)

I
0
(k

m
a)

#

=
+
i/1

C
i
(t)

cosh l
i
z!cosh l

i
(z!l)

sinh l
i
l

J@
0
(l

i
a). (13)

Now we take advantage of the orthogonality of the functions [sin j
n
z] over [0 l ].

Multiplying each side with sin j
n
z and integrating in z over [0 l ] we obtain
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Eliminating A between equations (11) and (14) we get
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where I is the unit matrix.

2.5. DISCHARGE EQUATION

The jump of potential at the plate is
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The discharge equation takes the form
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This time we take advantage of the orthogonality of the [J
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and F ( j) is the averaged value of u
z
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2.6. INTEGRATION IN TIME

Taking the time derivative of equation (17) and making use of equation (20) to eliminate
C0 we obtain
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This equation, together with equation (20) permits to advance in time B (t) and C(t), the
outer velocity=

0
(t) being given in time. They are all taken equal to 0 at time t"0 so that

equation (17) be ful"lled. The matrix (I!B
A
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B
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A
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) is calculated and inverted

prior to the simulation.

2.7. PARTLY SOLID DISK

In this section we consider the case of a partly porous, partly solid disk: the porous part
extends from R"0 to a

P
, the solid part from R"a

P
to a.

This extension has been motivated by the case of the TPG 3300 pontoon, which consists
of a #at triangular plate with a central square opening. It is not precisely an axisymmetric
geometry but it is expected that the circular case can give valuable results to optimize the
porosity ratio of the central opening, in order to maximize the heave damping at resonance.

The only modi"cation that has to be made, with regard to the theory already developed,
is that the no-#ow condition must be enforced at the disk, from R"a
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or, in vectorial form,
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Inverting the matrix I
P
, the same procedure as in the previous case can be used.

3. RESULTS

3.1. SOLID DISKS

First we consider the case of fully solid disks. In such case the problem reduces to equation
(17) where C,0. Once this linear system is solved, with=

0
(t)"1, the added mass M
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readily derived as
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Figure 1 gives the added mass coe$cient C
a
"M

a
/(oa3) as a function of the ratio a/l.

When the relative spacing goes to in"nity (a/lP0), the case of one single disk C
a
"8

3
is

recovered. When the relative spacing goes to zero, the added mass should reduce to the
mass of the entrapped water: M

a
"ona2l giving C

a
Kn l/a. This asymptotic behaviour is

well recovered by our numerical results.
For these calculations the truncation orders M and N of the expansions 1 and 2 were

taken equal to 100.
Now we investigate the rate of convergence with respect to the truncation order. This is

shown in Figure 2, which gives the added mass coe$cient for l/a"2 and 10 versus 1/M (N
being taken equal to M). It can be seen that convergence is quicker for l/a"2.
Figure 1. Solid disk. **, Added mass coe$cient as a function of a/l; } } }, nl/a.



Figure 2. Solid disk. Added mass coe$cient as a function of 1/M : **, l/a"2; } } }, l/a"10.
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3.2. POROUS DISKS

Now we consider the case of fully porous disks. The outer velocity=
0
(t) is taken as

=
0
(t)"Au sinut,

and equations (20) and (25) are integrated in time (with a Predictor}Corrector method),
with B (0)"C (0)"0.

First, we consider a spacing l/a equal to 2, and a nondimensional outer #uid motion
amplitude A/a (1!q)/(2kq2) equal to 1)5. All truncation orders M, N and I are chosen equal
to 100 and the number of segments used to calculate the integral (24) is taken as 200.

Figure 3 shows the simulated hydrodynamic force (made nondimensional) on the disk,
obtained via integration of the pressure di!erential, together with the nondimensional outer
#uid velocity (sinut) and outer #uid acceleration (cosut). It can be observed that a steady
state is very quickly attained, within less than one period. For this particular amplitude, the
maximum of the force is reached right in-between the maxima of the outer velocity and
acceleration: the damping and added mass coe$cients are about equal. These are obtained
by Fourier-analyzing the force over one period. In this case, we obtain 1)247 for the added
mass coe$cient C

a
and 1)175 for the damping coe$cient C

b
, de"ned through

F (t)"oa3(C
a
=Q

0
(t)#uC

b
=

0
(t))"oa3Au2 (C

a
cosut#C

b
sinut),

where F (t) is the hydrodynamic force.
In Figure 3, from time t/¹"2)5 the outer #ow velocity and acceleration are made equal

to zero. The hydrodynamic force then decreases smoothly to zero, meaning that the #ow
kinematics persist for some time: the discharge equation (6) introduces memory e!ects into
the #ow.

As a check that the discharge equation (6) is ful"lled, we show in Figure 4 its left- and
right-hand sides, when t/¹"1)88 and 2)10, that is, when the hydrodynamic force is nil and
at its maximum. At either instant the two curves are nearly indistinguishable. It can be
observed that when the force is nil, the pressure drop is not equal to zero everywhere along
the radius. It just changes sign at R/a&0)75.



Figure 3. Porous disk in sinusoidal #ow.**, Simulated hydrodynamic force F (t) (normalized by
oa3Au2) versus nondimensional time t/¹; } } } }, sin (ut); ----, cos (ut).

Figure 4. Porous disk in sinusoidal #ow. Left- and right-hand sides (normalized by oaAu2) of the
discharge equation (6) at two di!erent instants: **, left-hand side; ----, right-hand side.
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We now give the added mass and damping coe$cients, when the parameter
(A/a)(1!q)/(2kq2) varies from zero up to ten. They are given in Figures 5}7 for l/a"1, 2
and 5 (results for l/a'5 di!er little from this latter case).

When the parameter (A/a)(1!q)/(2kq2) goes to zero both the added mass and damping
coe$cients become nil: the water particles #ow freely through the porous wall. When it
increases to in"nity, the solid disk results are asymptotically recovered, with the damping
coe$cient going to zero and the added mass one increasing up to its value given in Figure 1.
For a value of (A/a)(1!q)/(2kq2) somewhere in-between 1 and 1)5 (for the relative spacings
considered here) the damping coe$cient reaches its peak value. It can be observed that it is



Figure 5. Porous disk in sinusoidal #ow. Relative spacing l/a"1. Added mass and damping
coe$cients versus (A/a)(1!q)/(2kq2): **, added mass coe$cient C

a
; -----, damping coe$cient C

b
.

Figure 6. Porous disk in sinusoidal #ow. Relative spacing l/a"2. Added mass and damping
coe$cients versus (A/a)(1!q)/(2kq2): **, added mass coe$cient C

a
; } } }, damping coe$cent C

b
.

Figure 7. Porous disk in sinusoidal #ow. Relative spacing l/a"5. Added mass coe$cient (**) and
damping coe$cient (} } }) versus (A/a) (1!q)/(2kq2).
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then equal to the added mass coe$cient, that is the hydrodynamic force is 453 out of phase
with the #ow acceleration. Similar features are obtained with porous circular cylinders
(Molin 1992b). Another remarkable result, also obtained with porous cylinders and with
2-D plates (Molin 2000), is that the peak value of the damping coe$cient is always equal, or
very close, to half the value of the added mass coe$cient in the limit (A/a)(1!q)/
(2kq2)PR, that is for the solid case.

Coming now to the e!ect of relative spacing, it can be seen from Figures 5}7 that, when
l/a varies from 1 to 5, the peak value of the damping coe$cient increases by less than 40%.
To maximize the damping e!ect over a given length, it is thus preferable to install many
plates.

3.3. PARTLY POROUS PARTLY SOLID DISKS

Now, we consider the case of disks which are porous from their axis to some radial distance
a
P

and then solid from a
P

to a. This introduces a new geometric parameter a
P
/a. As written

above, the incentive is to obtain results relevant for the pontoon of the TPG 3300. Hence,
we assume the disks to be far apart: we only consider the case l/a"5.

First, we present some results in one particular case a
P
/a"0)5 and (A/a)(1!q)/

(2kq2)"0)5 (which, from Figure 10, corresponds with the maximum of the damping
coe$cient). In Figure 8, we show the z component of the velocity (normalized by A u) along
the radius, at "ve di!erent instants separated by one-tenth of a period, starting at t"¹. As
already noticed for the fully porous disks, the phasing of the traversing velocity varies with
R/a. It can be checked that the no-#ow condition is well veri"ed on the solid part. In
Figure 9, we show the pressure drop at the same instants.

In Figures 10 and 11 we show the added mass and damping coe$cients, plotted against
the parameter (A/a)(1!q)/(2kq2), for a

P
/a"0)5 and 0)75. When the obtained damping

coe$cients are related to the fully porous case, it can be seen that for a
P
/a"0)5 (that is

a porous area equal to one-fourth the total disk area), the maximum damping coe$cient is
about 60% of the maximum damping of the fully porous one. For a

P
/a"0)75 (56)25% of
Figure 8. Partly porous partly solid disk in sinusoidal #ow. Traversing velocity </(Au) along the
radius at di!erent instants. Relative spacing l/a"5. Radius ratio a

P
/a"0)5.



Figure 9. Partly porous partly solid disk in sinusoidal #ow. Pressure di!erential Dp/(oaAu2) along
the radius at di!erent instants. Relative spacing l/a"5. Radius ratio a

P
/a"0)5.

Figure 10. Partly porous partly solid disk in sinusoidal #ow. Added mass (C
a
) and damping

(C
b
) coe$cients versus (A/a)(1!q)/(2kq2). Relative spacing l/a"5. Radius ratio a

P
/a"0)5: **,

C
a
; } } }, C

b
.
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the area), the ratio is 85%. This is because blockage e!ects strongly enhance the #ow
velocity through the porous part.

4. DISCUSSION

Our theoretical approach, based on perfect #uid and irrotational #ow assumptions, predicts
no damping for a solid disk. Practically however, the #ow separates at the edge, inducing
drag forces and energy dissipation. With a porous disk, there is separation at the edge as



Figure 11. Partly porous partly solid disk in sinusoidal #ow. Added mass (**) and damping (} } })
coe$cients versus (A/a)(1!q)/(2kq2). Relative spacing l/a"5. Radius ratio a

P
/a"0)75.
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well, and also separation through the openings. Our theoretical model takes the latter e!ect
into account (in a somewhat idealized way), but not the former one. One feels intuitively
that our model may yield appropriate values for the damping in so far as the e!ect of
separation through the openings is dominant with regard to the e!ect of separation at the
edge. A way to check whether this can be the case is to compare the damping values that we
obtain for a porous disk with available experimental values of the damping for a solid disk.
If the porous disk damping exceeds the solid disk damping by far, then there is a chance that
our model could be of some value.

Experimental data for solid disks are provided by Lake et al. (1999). They obtain that the
damping coe$cient varies linearly with the Keulegan}Carpenter number KC, for
0)14KC40)5. From their "gure 5, one has, roughly :

B@"0)25KC, where B@"
3B

16oa3u
, KC"n

A

a
.

Referring to our Figure 7, we see that with an optimized porosity ratio, the damping
coe$cient B/(oa3u) is equal to about 1)25. Hence, the ratio (optimized porous damp-
ing)/(solid damping) is given by

B
103064

B
40-*$

K0)95KC~1.

When the KC number is larger than one, no extra damping can be gained by making the
disk porous. There is little point in wondering whether our theory is applicable or not. One
has to better keep the disks solid.

The matter becomes di!erent if the KC number is much smaller than one. For SPAR
platforms it has been considered to add up solid plates to the truss structure below the hull,
in order to increase the damping in heave. Typically, the SPAR radius is around 15 m and
the motion amplitude is small, of the order of 1 m. This means a KC number around 0)2,
assuming the plates radii to be equal to the SPAR radius. Then there is a lot to gain by
making the plates porous. With a porosity slightly below 20%, the heave damping can be
increased by a factor 4 or 5. This result would demand con"rmation through dedicated
model testing.
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In Molin & Legras (1990) a somewhat similar situation is encountered. The structure
considered is a truncated, open-ended, vertical cylinder, initially designed to increase the
horizontal added mass of compliant towers. Forced oscillation tests are reported on
di!erent models, of height and diameter both equal to 1 m, at KC numbers ranging from
nearly zero up to about 0)5. Porosity ratios of 10, 20 and 24% were achieved, either as
horizontal slots (12 over the height of the cylinder) or with small circular perforations. It
was found that the measured and calculated damping coe$cients agreed closely at the
smallest porosity ratio, for KC numbers ranging from zero up to the value associated with
the peak in the damping curve. At larger KC numbers they started to deviate from each
other, the experimental values remaining more or less constant while the numerical ones
decreased slowly. This discrepancy was attributed to the drag forces taking place at the
lower and upper sharp edges of the truncated cylinder.

Another remarkable result obtained here is the sensitivity of the added mass coe$cient of
a porous disk to the porosity ratio and Keulegan}Carpenter number. It may also look
surprising that the added mass becomes nil when the KC number goes to zero. For the
perforated truncated cylinder considered in Molin & Legras (1990) this behaviour was
con"rmed by the experimental results. In that case, the radius of the circular perforations
was equal to 1 mm, to be compared with a cylinder diameter of 1 m and motion amplitudes
being as small as 2 mm. In the slotted version, owing to the larger spacings in-between the
slots, the added mass coe$cient did not quite decrease to zero as the motion amplitude was
reduced, but it nevertheless became very small, amounting to only about 10% of the zero
porosity case.

The sensitivity of the added mass coe$cient with the motion amplitude o!ers interesting
perspectives when one is concerned with resonance problems. They are discussed in Molin
(1992b) in the particular case of semi-submersible platforms with slotted pontoons.
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APPENDIX A: INTEGRALS

A.1. ORTHOGONALITY OF THE J
0
(l

i
R) FUNCTIONS OVER [0 a]

Let u (R)"J
0
(l

i
R) and v (R)"J

0
(l

j
R) with l

i
Ol

j
; u and v satisfy the di!erential equations

RuA#u@#l2
i
Ru"0,

RvA#v@#l2
j
Rv"0.

Multiplying both sides of the "rst equation with v, both sides of the second one with u,
and subtracting them, one gets

L
LR

[R(u@v!uv@)]#(l2
i
!l2

j
)Ruv"0,

Hence

(l2
i
!l2

j
)P

a

0
uvRdR"!R(u@v!uv@)K

a

0
"0

if u(a)"v (a)"0.

A.2. INTEGRAL P
a

0
J2
0
(l

i
R)R dR

One may readily check that

L
LzG

z2
2

(J2
0
(z)#J2

1
(z))H"zJ2

0
(z) .

Since J
0
(l

i
a),0, this leads to

P
a

0
J2
0
(l

i
R)RdR"

a2

2
J2
1
(l

i
a)

A.3. INTEGRAL P
a

0
I
0
(k

m
R)J

0
(l

i
R)R dR

Be u(R)"J
0
(l

i
R) and v(R)"I

0
(k

m
R). They verify

RuA#u@#l2
i
Ru"0,
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RvA#v@!k2
m
Rv"0.

Multiplying the "rst equation with v, the second one by u, subtracting, and integrating,
gives

P
a

0
RuvdR"

1
l2
i
#k2

m

R(uv@!u@v) K
a

0
.

One obtains "nally

P
a

0
I
0
(k

m
R)J

0
(l

i
R)R dR"

al
i

l2
i
#k2

m

J
1
(l

i
a)I

0
(k

m
a).
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